SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

H.T.No.

MBA I Year II Semester Regular & Supplementary Examinations June/July-2025 OPERATIONS RESEARCH

R20

Time: 3 Hours

SECTION – A

Max. Marks: 60

(Answer all Five Units $5 \times 10 = 50$ Marks)

UNIT-I

1 A company manufactures two products P_1 and P_2 . Each product uses **CO1 L6 10M** lathe and milling machine. The processing time per unit of P_1 on the lathe is 5 hours and on the milling machine is 4 hours. The processing time per unit of P_2 on the lathe is 10 hours and on the milling machine is 4 hours. The maximum number of hours available per week on the lathe and the milling machine are 60 hours and 40 hours respectively. Also the profit per unit of selling P_1 and P_2 are Rs.6.00 and Rs. 8.00 respectively. Formulate a linear programming model to determine the production volume of each of the products such that the total profit is maximized.

OR

2 What are the major applications of Operations Research in business, CO1 L1 10M commerce and industry.

UNIT-II

3 Determine an initial basic feasible solution to the following transportation CO2 L3 10M problem using Vogel's approximation method.

-		W	arehous	ses			
		W1	W2	W3	W4	capacity	
Factory	F1	10	30	50	10	7	
	F2	70	30	40	60	9	
	F3	40	8	70	20	18	
Requirement		5	8	7 OR	14		

4 What are the types of Transportation Problem? Explain them with suitable CO2 L1 10M examples.

UNIT-III

5 Discuss the steps involving in game with pure strategies. CO3 L2

OR

6 Consider the following payoff matrix with respect to player A and solve CO3 L2 10M it optimally

		Player									
			В								
		1	2	3	4	5					
Player A	1	3	0	6	-1	7					
	2	-1	5	-2	2	1					

10M

				UI	NIT-IV	7				
7	Find the Critical Path	for the f	ollowing p	roblem				CO4	L3	10M
	Activity	1-2	1-3	2-4	3-5	4-5				
	Duratio	n 6	2	4	3	4				
					OR					
8	Write short notes or	n						CO4	L1	10M
	a) PERT									
	b) Project crashing									
	c) Cost sloping									
				U	NIT-V	1				
9	What are the steps i	nvolved	in the prob	olems wit	th <i>n</i> jo	bs throug	h machines A,	CO5	L2	10M
	В,С.									
					OR					
10	There are 5 jobs, ea	ach of w	hich mus	t go thro	ugh th	e two ma	achines A	CO5	L3	10M
	and B in the order A	AB. Proc	essing tin	ne are giv	ven be	low.				
	Job	1	2		3	4	5			
	Machine-A	5	1		9	3	10			
	Machine-B	2	6		7	8	4			
	l									

Determine the sequence of 5 jobs that will minimizes the total elapsed time.

SECTION – B

(Compulsory Question)

1 x 10 = 10 Marks

11 There are five jobs (namely 1,2,3,4 and 5), each of which must go through machines A, B and C in the order ABC. Processing Time (in hours) are given below:

			,	0	
Jobs/Machine	1	2	3	4	5
Machine-A	5	7	6	9	5
Machine-B	2	1	4	5	3
Machine-C	3	7	5	6	7

Find the sequence of that will minimize the total elapsed time.

*** END ***